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Abstract 

Examples of quasi-periodic plane tilings, consisting 
of rhombi and having n-fold rotational symmetry, 
are obtained by the projection method from a slice 
of an n-dimensional cubic lattice (with n =  
5, 7, 8, 9, 10 and 12). A simplified geometrical descrip- 
tion of the method is given. A comparison is made 
of some of the properties of these tilings with those 
of the Penrose patterns. The applicability of recur- 
sions (composition/decomposition or deflation/in- 
flation) to generalized Penrose patterns with n = 5 is 
discussed. 

1. Introduction 

There has been much recent interest in reports of 
phases possessing non-crystallographic fivefold sym- 
metry (Schechtman, Blech, Gratias & Cahn, 1984; 
Venkataraman, 1985), and more recently also tenfold 
(Bendersky, 1985; Fung, Yang, Zhou, Zhao, Zhan & 
Shen, 1986) and 12-fold symmetry (Ishimasa, Nissen 
& Fukano, 1985). Although doubt still exists as to 
whether they are based on quasi-periodic patterns 
rather than on lattices (Pauling, 1987), those with 
fivefold symmetry have been related to two- or three- 
dimensional Penrose patterns (Penrose, 1978; 
Mackay, 1982). Advances in the derivation of quasi- 
periodic patterns have been based on the work of de 
Bruijn (1981) who showed that Penrose patterns 
could be derived by projecting a five-dimensional 
cubic lattice, and suggested that this process could 
be generalized. This work has been extended by 
Kramer & Neri (1984), Duneau & Katz (1985), and 
G~ihler & Rhyner (1986), who have established the 
mathematical basis of the process. Amongst their 
specifically illustrated results have been the three- 
dimensional Penrose pattern of Mackay, a general- 
ized two-dimensional pattern of 72 and 36 ° rhombi 
that does not satisfy Penrose's 'forcing rules', and a 
two-dimensional pattern of 30, 60 and 90 ° rhombi 
with a degree of 12-fold symmetry. 

More empirical work on quasi-periodic patterns 
with symmetry other than 5 has been that by Amman 
[reported by Griinbaum & Shepherd (1987), pp. 554- 
558] and by Watanabe, Ito & Soama (1987), who 
have derived two different recursion definitions for 
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the same pattern with eightfold symmetry, along the 
lines of the original derivation of the Penrose patterns. 
Amman also defined an aperiodic set of two prototiles 
with edges decorated in such a way as to force the 
pattern. 

We have followed de Bruijn's method, but have 
made use of the properties of the symmetry operations 
that we have discussed previously (Whittaker & 
Whittaker, 1986) in order to make the derivation as 
geometrical as possible, and thereby understandable 
to a wider readership. Following our method we have 
computed many quasi-periodic patterns having 
explicit n-fold rotational symmetry with n = 5, 7, 8, 
9, 10 and 12, and we illustrate some representative 
examples of these patterns. We derive a general rule 
for the numbers and proportions of different kinds 
of rhombus involved in these patterns, and suggest 
that it is desirable for some purposes to define such 
'kinds of rhombus' slightly differently from G~ihler & 
Rhyner (1986), so our rule differs from theirs. We 
discuss the relevance of the concept of the 'Weiringa 
roof' (de Bruijn, 1981) to these generalized patterns, 
and also the applicability to them of the kind of 
recursion relationships previously discussed for par- 
ticular fivefold and eightfold patterns by Penrose 
(1978), Amman (in Griinbaum & Shepherd, 1987) 
and Watanabe et al. (1987). 

2. Geometrical derivation of the tilings 

There is in n dimensions a symmetry operation of 
the cubic lattice which permutes all the n axes in 
order and which is exemplified by the operations 
represented by 

M3 = 0 , 
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0 0 1 
for n = 3, 4, 5, . . .  dimensions respectively. 
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For n _> 3 this has the properties that it leaves the 
axis [1 1 1 . . .  1] invariant and that the set of vectors 
for which the effect of M,  is a rotation through 2~r/n 
forms a two-dimensional plane II. The projection of 
the positive parts of the n axes on to this plane is a 
set of equally spaced half-lines emanating from a 
central point with angles 2rr/n between adjacent 
pairs.* 

In the case n = 5 de Bruijn (1981) has shown how 
projecting a certain slice of the five-dimensional cubic 
lattice on to a plane parallel to this II can give rise 
to the Penrose pattern. We here examine and exhibit 
the results of applying the same process for n-> 3. 

For n odd M,  can be expressed relative to suitable 
orthogonal axes in the form 

R2 
R,,, 

1 

where m = ( n -  1)/2, each Rk is the 2 x 2 block 

cos 2 ~'k/n -s in  2 rrk/n 

sin 21rk/n cos 2rrk/n]' 

and the rest of the matrix contains only zeros. 
For n even the form is 

Rz 
R2 

R m , 

-1 

1, 

where m ' =  ( n - 2 ) / 2 .  When M, is expressed in this 
form the plane II is that spanned by the axes of the 
first two coordinates. This plane can be found in the 
manner we have described in our discussion of 
four-dimensional fivefold symmetry (Whittaker & 
Whittaker, 1986). 

Following de Bruijn (1981) we project on to H 
those points k of the cubic lattice whose 'open cube' 
{(x0, x l , . . . ,  x,,-1): k i -  1 < xi < ki all i} intersects the 
plane ~/+ H, where ~, = (yo, Y~,. • . ,  3',- ~). We here 
exclude any consideration of the cases (involving 
particular values of ~/ and corresponding to de 
Bruijn's 'singular cases') in which the process does 
not lead to a complete and unambiguous tiling of the 
plane by. rhombi. 

* Projection of  the operations M,, down [ 1 1 1 . . .  1 ] leads to the 
family of  symmetry operations described by Whittaker & Whittaker 
(1986, p. 397). In particular M5 projects to a V operation in four 
dimensions, which can be expressed as a double fivefold rotation 
about absolutely perpendicular  planes which are crystailographi- 
cally irrational. 

3. General consideration of the projections 

The square faces of the n-dimensional cubes may be 
distinguished in terms of the relationship between the 
axes that define their edges, and these distinctions 
control the kinds of rhombus into which they project. 
Since the n axes Xo, Xl , . . . ,x ,_~  are transformed 
cyclically by the operation M,  we can distinguish the 
rhombi as follows: 

First kind: projection of a face bounded by two 
adjacent axes, e.g. 

[ 1 0 0 . . . 0 ]  and [ 0 1 0 . . . 0 ] .  

Second kind: projection of a face bounded by axes 
with one space between, e.g. 

[ 1 0 0 . . . 0 ]  and [ 0 0 1 . . . 0 ] .  

rth kind: projection of a face bounded by axes with 
r -  1 spaces between. 

The number of kinds of cube face distinguished in 
this way is ( n -  1)/2 for n odd and n/2 for n even, 
but in the latter case one of these faces is perpen- 
dicular to the plane of the projection and so does not 
give rise to a rhombus. There are therefore (n - 1)/2 
kinds of rhombus for n odd and (n - 2 ) / 2  for n even. 
A rhombus of the rth kind has angles 2rrr/n and 

-2rrr/n. In the diagrams distinctions between the 
kinds of rhombus are emphasized by shading parallel 
to the bisector of the angle 2~r/n, except for those 
in each tiling that have r=rmax which are left 
unshaded. When n is even the rhombi of kinds r and 
n / 2 - r  are of the same shape but for reasons that 
will appear in § 5 we regard them as of different kinds, 
and they are shaded parallel to opposite diagonals. 
When n =4m the rhombi of kind n/4 are squares 
and the shading direction is parallel to the positive 
bisector of the two axes. In Fig. l(b) the squares are 
shaded even though they correspond to r = rma x : 1. 

4. The tilings 

If the vector ~/is parallel to the axis [1 1 1 . . .  1] then 
the tiling produced by the projection has global n-fold 
rotational symmetry about the origin, and the 
examples shown here are confined to this case. If the 
n equal components of ~, are denoted 7, then the 
value of y serves to identify a given pattern. In the 
figures the origin of each pattern, about which it has 
global n-fold symmetry, is shown by a dot. 

n = 3 , 4  and 6 

In these cases the projection plane II is parallel to 
a rational crystallographic plane of the n-dimensional 
lattice, and so its intersections with the (n- 
dimensional) cubic cells repeat regularly. The result- 
ing tilings are therefore all periodic, as has already 
been shown by Kramer & Neri (1984). However, we 
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illustrate them in Fig. 1 for comparison with other 
cases, and because they illuminate the general idea 
of the projection method, especially in the well known 
case of n = 3. If the distinction between the two kinds 
of rhombus for n - - 6  is ignored then this tiling 
becomes the same as that for n - -3  with a shift of 
origin. The patterns are independent of the value 
of 3'. 

(a) 

BMWm HEWN  
|Ui   BMm  
$1N lwmwm  

 iJ M m mB 
IWmMBM MWm 
BmMMmzm    

(b) 

(c) 

Fig. 1. The projections which give periodic tilings. (a) n = 3; (b) 
n = 4 ;  (c) n = 6 .  

n = 5  

If 3' is chosen such that Y~i 3'i = 0 (mod 1) then the 
projection is a Penrose pattern. Suitable choice of 3' 
can bring either of the two possible global fivefold 
symmetry points to the origin, as illustrated in Figs. 
2(a) and (b). When ~i 3'~ = 0.5 (mod 1) the patterns 

(a) 

(b) 

/ 

(c) 

Fig. 2. Projections with n = 5. (a) 3,= 0-2; (b) y = 0 . 4 ;  (c) 3,= 0.1. 
(a) and (b) are Penrose patterns but (¢) is not. 



contain many points of local tenfold symmetry, and 
an example is shown in Fig. 2(c). Other characteristic 
features occur for different values of 3'. 

n = 8  

This case is particularly interesting as it is the only 
t 

n = 7 , 9 ,  10 and 12 

Examples chosen from the many possibilities that 
arise with these values of n are shown in Figs. 4-7. 

\ 

/ 

one apart from n = 5 (and the periodic one n = 6) 
that is based on rhombi of only two shapes, though 
they are of three kinds, and for which a tiling has 
been derived by recursion; it has in fact been defined 
by two different recursions by Amman (Grfinbaum 
& Shepherd, 1987) and by Watanabe et al. (1987). 
Their tiling can be obtained with 7 = 0 . 2 5  and is 
shown in Fig. 3(b). However with n = 8 the condition 
Y~ 7, = 0 (mod 1) is not sufficient to ensure that the 
tiling conforms to the known recursion, and another 
with a different value of 3' is shown in Fig. 3(a). 
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m 

I I / ~ , 

(a) 

(b) 

Fig. 4. Projections with n =7.  (a) 7=0.142857; (b) 7 = 0 . 5 .  

' : ' " " ,A,. 

(b) 

Fig. 3. Projections with n = 8. (a) 7 = 0.125; (b) 7 = 0.25" the tiling 
devised by Amman (Griinbaum & Shepherd, 1987) and 
Watanabe et  al. (1987). Fig. 5. A projection with n =9;  7=0.111111. 
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5. Properties of the tilings 

The tilings share the following properties with the 
Penrose patterns. 

(i) For every n there exists a tiling in which the 
rhombi are arranged radially in order of their kind 
ri, from r~ to rmax, around the origin. Those of the 
kind with rmax border a regular 2n-gon (n odd) or a 
regular n-gon (n even). Such tilings are given when 
T = 1/n, and their central feature bears a close 
analogy to that of the fivefold Penrose pattern of Fig. 
2(a). When y=(n-1)/2n, for n odd, the central 
feature has a star-like nature, though it is less directly 
analogous to the corresponding pattern of Fig. 2(b). 

(ii) Rhombi of the same kind that share an edge 
are never in parallel orientations; if they are squares 
they differ in inherent orientation as shown by the 
shading. Adjacent rhombi of different kind but the 
same shape may have their edges in parallel 
orientation. 

For all n # 3, 4 or 6 the tilings share the following 
further properties with the Penrose patterns. 

Fig. 6. A projection with n = 10; 3' = 0.1. 

< 

E 

I 
Fig. 7. A projection with n = 12; 3' = 0.083333. 

(iii) The numbers of the different kinds of rhombus 
per unit area are in the ratio of their areas, as shown 
in the Appendix. If the distinction were not made 
between different kinds of rhombus with the same 
shape this simple relationship would break down for 
n even. 

(iv) Although a finite area of tiling contains at most 
one point of global n-fold rotational symmetry it may 
contain many points with local n-fold rotational sym- 
metry and local mirror lines. 

(v) Since the plane 3' + II is irrational any point k 
of the n-dimensional cubic lattice is situated 
differently in relation to it from any other (except 
those to which it may be symmetrically related via 
the operation M,,). However, a point k' of the lattice 
can be found such that k - k '  can be made as nearly 
parallel to the plane as desired. Provided that no 
point of the lattice lies on the plane 3' + II (and not 
more than one point can lie on it), it can be shown 
that any patch of the pattern containing finitely many 
rhombi appears infinitely many times, and the dis- 
tance between such similar patches increases with their 
size. The latter property has been verified empirically 
on some of the drawings, though in other cases the 
similarity distance seems to be too large to be visible 
within the area of the tiling that it is convenient to 
generate. 

6. Weiringa roofs of order n 

Weiringa (reported by de Bruijn, 1981) has pointed 
out that the vertices of a tiling by Penrose rhombi [as 
in Figs. 2(a) and (b)] may be indexed with integers 
that differ by 1 along any edge and which are restricted 
to four values which may be regarded as running 
from 1 to 4. In the present derivation these indices 
are equivalent to the value of 

n - l  

h = Z x ,  
i = 0  

where xi is the ith coordinate of the corresponding 
point of the n-dimensional lattice. In general h may 
take a number N of consecutive integral values where 

N = ( n + 5 ) / 2  f o r n  odd 

and 

N=(n+4)/2 for n even, 

but in special cases [like the Penrose tilings of Figs. 
2(a) and (b)] it is restricted to N -  1 such values. If 
each vertex of the tiling is raised to a distance above 
the plane proportional to h then an undulating ' roof '  
is obtained. With n = 5 and heights of hsin 18" the 
roof is composed of only one shape of rhombus. This 
is true for tilings like Fig. 2(c) as well as for Penrose 
tilings. 

No corresponding reduction in the number of 
shapes of rhombus occurs for n # 5. However, the 
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concept is not without its uses in considering other 
patterns. For example the ' roof '  form of Fig. 6 with 
n = 10 contains decagonal  pyramidal  peaks,  whereas 
the apparent ly  similar tenfold centres in Fig. 2(c) 
consist of  radially ar ranged ridges and valleys, with 
fivefold symmetry  in the ' roof '  form. A similar distinc- 
tion applies to the sixfold centres with n = 6 and n = 3. 

pattern turned through 36 ° , but it is necessary to 
accept seven different decomposi t ion types of  72 ° 
rhombi and four  different decomposi t ion types of  36 ° 
rhombi,  not counting enant iomorphs  of those that do 
not possess mirror  symmetry (Fig. 9). In decomposing 
any rhombus  it is necessary to take account  of  its 
polarity, which is shown in Figs. 8 and 9 by a + sign 

7. Recursive relationships 

The quasi-periodic tilings by rhombi that have pre- 
viously been discovered independent ly  of  the projec- 
tion method have been definable by recursive 
relationships described as composit ion and decompo-  
sition or inflation and deflation. For the Penrose 
patterns the scale factor in this process is ~p= 
(1 + ` /5 ) / 2 ,  for A m m a n ' s  set A5 it is 1 + , /2 ,  and for 
the same pat tern in the terms discussed by Watanabe  
et al. (1987) it is 2-+,/2. 

In a first approach  to extending such relationships 
to more general  cases we confine our at tention to 
n = 5 and take as our scale factor 1 + ~o. Since this 
equals ~02 it corresponds to two applicat ions of  
Penrose 's  recursion, and leads from Fig. 2 (a)  or (b) 
to a self-similar pattern turned through 36 ° about  the 
origin. In this case the decomposi t ion of  all the 
rhombi is as shown in Fig. 8. A similar procedure  
can be appl ied to Fig. 2(c) to produce a self-similar 

Fig. 8. Decomposition with a scale factor of 92 for n = 5, 3' = 0-2 
and 0.4 (Penrose patterns). For 7=0.2 [Fig. 2(a)] the 72 ° 
rhombus has its 'positive' end at the origin; for 3,=0.4 [Fig. 
2(b)] it has its 'negative' end at the origin. 

+ 

+ 

1 + 2 3 4 

o 

+ 

+ 

i t + 

+ 

o 

o 

D 
o 

Fig. 9. Decomposition types for n =5, "V=0.1, 0.3 and 0.5. Types 3', 6' and D' are mirror images of 3, 6, and D respectively. For 
3' =0.1 [Fig. 2(c)] type 1 has its 'positive' end at the origin; for 3' = 0.3 and 0.5 (not illustrated) types 5 and C respectively have 
their 'negative' ends at the origin. 
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at one vertex, and where necessary by a small circle 
at another vertex. 

The set of decomposition types in Fig. 8 applies to 
patterns derived with 3/=0.2 and 0.4 and is the 
simplest case. The set in Fig. 9 applies to patterns 
with 31 = 0.1, 0-3 and 0.5 and is the next simplest case. 
In considering other values of 3/ it is necessary to 
take account of a specific feature of Fig. 9. Types 5 
and 7 do not differ in the geometrical arrangement 
of their parts after one stage of decomposition, but 
only after two stages; they may be said to differ at a 
depth of two stages. The same is true of types 3 and 
6, and of types A, C and D. When 3/departs from 
one of the simple values (0.1, 0.2 etc.) by an arbitrarily 
small amount the pattern only changes beyond a 
correspondingly large radius, and therefore the num- 
ber of decomposition types will be indefinitely large 
owing to differences at an indefinite depth of 
decomposition. Only for certain special values of 3/ 
can one expect to find practicably definable sets of 
decomposition types. 

When a set of decomposition types can be defined 
then it appears to be possible to decorate the edges 
of the rhombi of each type in distinctive ways so as 
to define an aperiodic set of prototiles corresponding 
to a set of forcing rules for assemblage into the 
pattern. 

8. Concluding remarks 

Non-periodic ( 'quasi-periodic') tilings exist which 
possess at most one point of global n-fold rotational 
symmetry but many points having such symmetry 
locally, for all values of n ~ 2, 3, 4 and 6. They have 
many properties in common with the fivefold Penrose 
patterns, although they are generally more complex. 
However, there seems to be no prima facie reason 
why their differences from these patterns should pre- 
clude their occurrence as quasi-lattices of quasi-crys- 
talline phases if such phases exist. More detailed 
study is in progress of the relationships of the tilings 
and of their recursive properties to the vector 7 used 
in their derivation. 

We thank P. M. de Wolff for initially drawing our 
attention to the possible relationship of Penrose pat- 
terns to the fivefold symmetry operation of four- 
dimensional crystallography, and R. Penrose for 
encouraging us to pursue the study at an early stage. 

APPENDIX 
The proportions of rhombi of different kinds 

The pattern is defined as the projection on to a plane 
II of certain squares of the n-dimensional lattice that 
bound cubes which are intersected internally by ~/+ 
II. Hence the 'average direction' of those squares 
whose projections constitute the pattern must be the 
same as the direction of II. 

The condition that a vector x lies in II can be 
expressed in the form 

( M 2 - 2 M .  cos 2 7 r / n + l ) . x = 0  

(Whittaker & Whittaker, 1986). Two independent 
solutions of this are always 

(0, sin 2 w / n ,  sin 4 7 r / n , . . . ,  sin 2(n - 1)Tr/n) 

and 

(1, cos 27r/n, cos 4 7 r / n , . . . ,  cos 2(n - 1)Tr/n). 

Thus the plane II is spanned by vectors 

n--1 n--I 

Y. ej sin 27rj/n and Y~ ej cos 27rj/n 
j = 0  j = 0  

where ej is the unit vector along the j th  axis. 
Let x be the projection on to the 3-space S spanned 

by e0, el, and er (2 -< r-< n - 1), i.e. 

,r xjej = xoeo + xlel + Xre,. 
\ j = 0  

Then in S the projection ,r(II) is spanned by 

el sin 2zr/n + er sin 2zrr/n 

and 

e0+el cos 2 7r/ n + er cos 2 zrr/ n. 

A vector normal in S to a-(H) is 

e0 sin 2 ( r -  1)zr/n - e l  sin 2 w r / n + e r  sin 2zr/n. 

Of those squares whose projections on to II appear 
as rhombi of the pattern only those with sides parallel 
to eo and el, eo and er, or el and er have projections 
by a- on to squares in S (all other squares are edge-on 
to S). These produce rhombi in the pattern of the 
first, rth and ( r - 1 ) t h  kinds respectively, and we 
denote the relative frequency of rhombi of the rth 
type in the pattern as Pr. Then in S we have squares 
as follows: 

Sides Normal Relative 
parallel to vector frequency 

eo, el er Pl 
eo, er - -e l  Pr 

e l ,  er eo Pr-1 • 

The sign of el here ensures that all these make an 
acute angle with the normal vector to -t(lI) above. 

Hence the average normal vector* of these squares 
is 

pr - l eo -  p, el +pier 

* The distance from the plane ~, + II of points of the  lattice which 
project to points of  the pattern is bounded. The average normal 
vector of the squares which project to rhombi in any patch R of 
the pattern will therefore tend to this limit as the size of  R increases 
whatever its shape or position, and so the pattern is metrically 
balanced in the sense defined by Griinbaum & Shepherd (1987). 
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and this must be normal  to x(l-I) in S. Hence 

( p r - l e o - p r e l + p l e ~ ) .  (el sin 27r/n +e~ sin 2-n'r/n) = 0  

giving 
p J ( s i n  27r/n)  = p J ( s i n  27rr/n) .  

Since the area of a rhombus  of the rth kind with unit 
sides is sin 27rr/n, it follows that the frequency with 
which the different kinds of  rhombi occur is in propor- 
tion to their areas. For all values of n # 3, 4 or 6 some 
ratios of s i n 2 7 r / n : s i n 2 7 r r / n  are irrational, which 
conforms with an earlier proof  of the non-periodici ty 
of Penrose tilings. 
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Abstract 

Four transfer  R N A  crystals, the monocl inic  and 
or thorhombic  forms of yeast tRNA Phe as well as forms 
A and B of  yeast tRNA Asp, have been submit ted to 
the same restrained least-squares refinement program 
and refined to an R factor well below 20% for about 
4500 reflections between 10 and 3 A. In yeast tRNA A~p 
crystals the molecules exist as dimers with base pair- 
ings of the ant icodon (AC) triplets and labil ization 
of  the tertiary interaction between one invariant  
guanine of  the d ihydrour id ine  (D) loop and the 
invariant  cytosine of the thymine  (T) loop (G 19-C56). 
In yeast t R N A  Phe crystals, the molecules exist as 
monomers  with only weak intermolecular  packing 
contacts between symmetry-related molecules. Des- 
pite this, the tertiary folds of the L-shaped tRNA 
structures are identical  when allowance is made for 
base sequence changes between tRNA eh~ and 
tRNA Asp. However, the relative mobilit ies of  two 
regions are inverse in the two structures with the AC 
loop more mobile  than the D loop in tRNA Ph~ and 
the D loop more mobile  than the AC loop in tRNA A~p. 
In addit ion,  the T loop becomes mobile in tRNA A~p. 
The present refinements were performed to exclude 
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packing effects or refinement bias as possible sources 
of such differential dynamic  behavior.  It is concluded 
that the transfer of  flexibility from the ant icodon to 
the D- and T-loop region in tRNA Asp is not a crystal- 
line artefact. Further, analysis of the four structures 
supports a mechanism for the flexibility transfer 
through base stacking in the AC loop and concomi- 
tant variations in twist angles between base pairs of  
the ant icodon helix which propagate up to the D- 
and T-loop region. 

1. Introduction 

Biological macromolecules  often present crystalline 
po lymorphism and this effect is part icularly pronoun-  
ced with tRNA molecules (Dock, Lorber, Moras,  
Pixa, Thierry & Gieg6, 1984). Such a po lymorph ism 
offers the possibil i ty of  studying different conforma- 
tional states of  the molecules. The crystal structures 
of two crystal forms of  yeast aspartic acid tRNA 
( tRNA Asp) have recently been refined to an R factor 
below 20% at 3 A resolution (Westhof, Dumas  & 
Moras, 1985; Dumas,  Westhof  & M o r a s ,  1988). For 
these refinements,  a restrained least-squares program, 

O 1988 International Union of Crystallography 


